NoSQL? No, SQL!

10 SQL Tricks That You Didn't Think Were Possible

Copyright (c) 2009-2016 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

NoSQL? No, SQL!

10 SQL Tricks To Convince You that SQL is Awesome

Copyright (c) 2009-2016 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

Because clickbait headlines work!

... Trick #3 Changed work forever!... Trick #8 Makes doctors hate you!... Trick #9 is bigger than life!

Me – @lukaseder

Founder and CEO at Data Geekery

- Oracle Java Champion
- JUG.ch Board Member

JAVA USER GROUP CH

SQL is a device whose mystery is only exceeded by its power!

Why do I talk about SQL?

SQL is the only ever successful, mainstream, and generalpurpose 4GL (Fourth-Generation Programming Language)

And it is awesome!

Why doesn't anyone else talk about SQL?

Why doesn't anyone else talk about SQL?

Vhat is

What is SQL?

SQL is the original microservice

What is SQL?

SQL is the original microservice

Just install a single stored procedure in an Oracle XE instance, deploy, done.

Who thinks this is SQL?

Who thinks this is SQL?

```
@Entity
@Table(name = "EVENTS")
public class Event {
  private Long id;
  private String title;
  private Date date;
  @Id
  @GeneratedValue(generator = "increment")
  @GenericGenerator(name = "increment", strategy = "increment")
  public Long getId() { /* ... */ }
  @Temporal(TemporalType.TIMESTAMP)
  @Column(name = "EVENT DATE")
  public Date getDate() { /* ... */ }
```


Or this...?

```
@OneToMany(mappedBy = "destCustomerId")
@Fetch(FetchMode.SUBSELECT)
@JoinTable(
    name = "customer dealer map",
    joinColumns = {
        @JoinColumn(name = "customer_id", referencedColumnName = "id")
    },
    inverseJoinColumns = {
        @JoinColumn(name = "dealer_id", referencedColumnName = "id")
private Collection dealers;
```

Found at http://stackoverflow.com/q/17491912/521799

Think again!

Still using Windows 3.1?

So why stick to SQL-92?

Copyright © Microsoft Corporation 1985-1992. All Rights Reserved.

Modern SQL in PostgreSQL @MarkusWinand

This is also SQL

```
-- Query from http://explainextended.com/2013/12/31/happy-new-year-5/
WITH RECURSIVE q(r, i, rx, ix, g) AS (
 SELECT r::DOUBLE PRECISION * 0.02, i::DOUBLE PRECISION * 0.02,
        .0::DOUBLE PRECISION , .0::DOUBLE PRECISION, 0
 FROM generate series(-60, 20) r, generate series(-50, 50) i
 UNION ALL
 SELECT r, i, CASE WHEN abs(rx * rx + ix * ix) <= 2 THEN rx * rx - ix * ix END + r,
              CASE WHEN abs(rx * rx + ix * ix) <= 2 THEN 2 * rx * ix END + i, g + 1
 FROM q
 WHERE rx IS NOT NULL AND g < 99
SELECT array to string(array agg(s ORDER BY r), '')
FROM (
 SELECT i, r, substring(' .:-=+*#%@', max(g) / 10 + 1, 1) s
 FROM q
 GROUP BY i, r
 q
GROUP BY i
ORDER BY i
```

This is also SQL: Generating the Mandelbrot Set

Query from http://evo	lainextended com/2012/12/21/hanny new year E/
	<pre>lainextended.com/2013/12/31/happy-new-year-5/</pre>
WITH RECURSIVE q(r, i, r	x, ix, g) AS (
SELECT r::DOUBLE PRECI	array_to_string
.0::DOUBLE PRECI	
<pre>FROM generate_series(-</pre>	£
UNION ALL	
UNION ALL	
SELECT r, i, CASE WHEN	
CASE WHEN	
CASE WHEN	· · · * @ @ @ = . @ : @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @
FROM a	. : : : : : : : : : : : : : : : : : : :
WHERE rx IS NOT NULL A	· - = = = = = = = = = = = = = = = = = =
WHERE IX IS NOT NULL A	
	······································
SELECT appay to string(a	
<pre>SELECT array_to_string(a</pre>	
FROM (
SELECT i n substning	· · + 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
SELECT i, r, substring	· · · =+ + 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
FROM q	
GROUP BY i, r	- + * : : : : : : : : : : : : : : : : : :
) q	=9≉99999999999999999999999999999999999
GROUP BY i	
ORDER BY i	::000-000000000-:=:00000000000000000
	.: @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @
	.: 0000000000000000000: 000000000000
	\$ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @

••

Copyright (c) 2009-2016 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

SQL:1999 is turing complete

SQL:1999 is turing complete

Copyright (c) 2009-2016 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

SQL:1999 is turing complete

Seriously, what does that mean?

Any program can be written in SOL! (although, no one's that crazy)

The strength of a 4GL language

You tell the machine WHAT, not HOW

Copyright (c) 2009-2016 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

Which do you feel is more awesome? This?

Siri, what is the meaning of life?

Image credit: https://www.flickr.com/photos/procsilas/12821454664 By Procsilas Moscas. License CC-BY 2.0

Which do you feel is more awesome? Or this?

Image credit: <u>https://www.flickr.com/photos/ajmexico/3281139507</u> By ajmexico. License CC-BY 2.0

That's why the company is called "Oracle"

Das Oratel zu Delphi.

What's the problem with SQL?

What's the problem with SOL?

Copyright (c) 2009-2016 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

What's the problem with SQL? – SQL code

```
WITH RECURSIVE t(d) AS (
  SELECT DATE '2005-07-01'
  UNION ALL
  SELECT (d + INTERVAL '1 days')::DATE
  FROM t
  WHERE d < DATE '2005-07-31'
       *
SELECT
FROM t
```


What's the problem with SQL? – COBOL code

Why people don't like SQL

The syntax is awkward.

Why people don't like SQL

Declarative thinking is hard.

Reporting is «very easy» with SQL

Bulk data processing is «Very easy» with SQL.

By «very easy» I mean hard. But you don't have a choice.

Winston Churchill on SQL

GSQL is the worst form of database querying, except for all the other forms.

Remember this from this talk: The SQL muscle

Image credit: <u>https://www.flickr.com/photos/flamephoenix1991/8376271918</u> By _DJ_. License CC-BY SA 2.0

Remember this from this talk: The SQL muscle

This is the SQL muscle. It needs constant training and practice

Image credit: https://www.flickr.com/photos/flamephoenix1991/8376271918 By _DJ_. License CC-BY SA 2.0

Remember this from this talk: The SQL muscle

It is the same for the Java muscle

Image credit: <u>https://www.flickr.com/photos/mikecogh/6684205707</u> By Michael Coghlan. License CC-BY SA 2.0

Remember this from this talk: The SQL muscle

A.K.A. the FactoryBodyBuilderProxyBeanDelegateComponent

Image credit: <u>https://www.flickr.com/photos/mikecogh/6684205707</u> By Michael Coghlan. License CC-BY SA 2.0

What you came here for

Enough bla bla What you came here for...

10 SQL tricks to convince you SQL is awesome

- 1. Everything is a table
- 2. Data generation with recursive SQL
- 3. Running total calculations
- 4. Finding the length of a series
- 5. Finding the largest series with no gaps
- 6. The subset sum problem with SQL
- 7. Capping a running total
- 8. Time series pattern recognition
- 9. Pivoting and unpivoting
- 10. Abusing XML and JSON (don't do this at home)

10 SQL tricks to convince you SQL is awesome

Are you really ready?

This presentation has roughly 5713 slides of SQL awesomeness!

Speaking of slides: Let's thank our patron saint Ada Lovelace

Speaking of slides: Let's thank our patron saint Ada Lovelace

Without her, instead of writing SQL, we would all be writing Powerpoint or something

Most of you know this:

SELECT * FROM person

Most of you know this:

Most of you know this:

Most of you also know this:

SELECT *
FROM (
 SELECT *
 FROM person
) AS t -- "derived table"

But did you know this?

Ь а integer text SELECT 1 1 a 2 2 b FROM -- "values constructor" VALUES (1, 'a'), (2, 'b') t(a, b) -- "derived column list" SQL Server PostgreSQ

But did you know this?

Ь а integer text * SELECT 1 1|a FROM 2 2 b SELECT 1 AS a, 'a' AS b FROM dual UNION ALL **b** SELECT 2, FROM dual ORACLE

1. Everything is a table – Compare it to Java 8

TABLE SELECT DISTINCT JOIN WHERE / HAVING GROUP BY ORDER BY UNION ALL

- : Stream<Tuple<..>>
- : map()
- : distinct()
- : flatMap()
- : filter()
 - : collect()
 - : sorted()
 - : concat()

See:

http://blog.jooq.org/2015/08/13/common-sql-clauses-and-their-equivalents-in-java-8-streams/

1. Everything is a table – Compare it to Java 8

Better Streams: https://github.com/jOOQ/jOOL

1. Everything is a table – Compare it to Java 8

```
Seq.seq(persons)
  .collect(
     count(),
     max(Person::getAge),
     min(Person::getHeight),
     avg(Person::getWeight)
```

Common Table Expressions

The only way to declare variables in SQL

v

integer

1

2

3

4

5

2. Data Generation with Recursive SQL 2. D v WITH RECURSIVE t(v) AS (intege 1 N. -- Seed Row SELECT 1 2 UNION ALL 3 4 SELECT v + 1 -- Recursion 5 FROM t SELEC V S FROM 5 F Copyright (c) 2009-2016 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

WITH RECURSIVE t(v) AS (-- Seed Row SELECT 1 SELECT v + 1 -- Recursion Credits for this lame Powerpoint joke: Hadi Hariri from JetBrains

Copyright (c) 2009-2016 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

Copyright (c) 2009-2016 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

Copyright (c) 2009-2016 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

3

4

5

Remember?

Applications:

Iterate from 1 to 10 Generate all dates in July 2016 Generating graphs (stay tuned!)

What is a running total?

Ask your project manager to give you a crash course about the awesome Microsoft Excel!

	SU	MME -	:	×	✓ f _x	=	-C3-B3
What is a runi		А		В	С		D
vvial is a luii		value_date		amount	balance		
	2	17.03.2014		15.87	13222	.45	
	3	16.03.2014		-33.14	13206	58	
	4	16.03.2014		-93.77	=C3-B3		
Ask your proje	5	13.03.2014		10.65	13333.	49	
	0	11.03.2014		19.16	13322.	.84	
you a crash co	7	11.03.2014		-59.25	13303.	68	
5	8	11.03.2014		94.86	13362.	.93	
awesome Mic	9	10.03.2014		80.42	13268	07	
	10	10.03.2014		38.43			
	11	09.03.2014		-4.41		7	
	12	08.03.2014		80.45			
	13	07.03.2014		-56.45			

But first, a little theory about window functions

There was SQL before window functions and there was SQL after window functions.

What are window functions?

-- Aggregations / rankings on a subset of -- rows relative to the current row being -- transformed by SELECT function(...) OVER (PARTITION BY ... ORDER BY ... ROWS BETWEEN ... AND

Aggregations / rankings on	a subset of
rows relative to the curre	nt row being
high	umber title length character varying(255) smallint
function() OVER (1 ALIEN CENTER 46 2 IRON MOON 46
PARTITION BY length	3 KWAI HOMEWARD 46 4 LABYRINTH LEAGUE 46
ORDER BY	5 RIDGEMONT SUBMARINE
ROWS BETWEEN AND	2 DOWNHILL ENOUGH 47 3 HALLOWEEN NUTS 47
NOWS DLIWLLN ••• AND •••	4 HANOVER GALAXY 47
	5 HAWK CHILL 47 6 SHANGHAI TYCOON 47

47 48

7 SUSPECTS QUILLS

1 ACE GOLDFINGER

Aggregations / rankings on a subset of	F
rows relative to the current row being	5
bigint character varing(255)	ength smallint
function() OVER (46
DARTTTON RV longth 3 KWAI HOMEWARD	46 46
PARTITION BY length 3 KWAI HOMEWARD 4 LABYRINTH LEAGUE	46
ORDER BY	46
Index Index	47
2 DOWNHILL ENOUGH	47
ROWS BETWEEN AND 3 HALLOWEEN NUTS	47
4 HANOVER GALAXY	47
5 HAWK CHILL	47
6 SHANGHAI TYCOON 7 SUSPECTS QUILLS	47

1 ACE GOLDFINGER

48

Aggregations / rankings on a s	subset of	
rows relative to the current	row being	
transformed by SELECT		ngth nallint
	EN CENTER	46
2 IRON	1 MOON	46
PARTITION BY	I HOMEWARD	46
4 LABY	RINTH LEAGUE	46
	GEMONT SUBMARINE	46
	DRCE SHINING	47
	HILL ENOUGH	47
ROWS BETWEEN AND 3 HALL	LOWEEN NUTS	47
4 HANO	OVER GALAXY	47
5 HAWK	(CHILL	47
6 SHAN	IGHAI TYCOON	47
7 SUSP	PECTS QUILLS	47

48

1 ACE GOLDFINGER

Copyright (c) 2009-2016 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

Aggregations / rankings on a subse	t of
rows relative to the current row b	eing
transformed by SELECT	length
function() OVER (5) smallint 46
2 IRON MOON	46
PARTITION BY 3 KWAI HOMEWARD	46
4 LABYRINTH LEAGUE	46
ORDER BY title	
	47
	47
ROWS BETWEEN AND 3 HALLOWEEN NUTS	47
4 HANOVER GALAXY	47
5 HAWK CHILL 6 SHANGHAL TYCOON	47
7 SUSPECTS QUILLS	♦ 47 47

48

1 ACE GOLDFINGER

Let this settle a bit

Image credit: <u>https://www.flickr.com/photos/epler/482921404</u> By Jim Epler. License CC-BY 2.0

Let this settle a bit

Window functions are aggregations / rankings on a subset of rows relative to the current row being transformed by SELECT

Image credit: https://www.flickr.com/photos/epler/482921404 By Jim Epler. License CC-BY 2.0

This is the data in the database table

ID	VALUE_DATE	AMOUNT
9997	2014-03-18 2014-03-16	99.17
9979 9977	2014-03-16 2014-03-16	-94.60 -6.96
9971	2014-03-15	-65.95

This is what we want to calculate

ID	VALUE DATE	AMOUNT	BALANCE
9997	2014-03-18	99.17	19985.81
9981	2014-03-16	71.44	19886.64
9979	2014-03-16	-94.60	19815.20
9977	2014-03-16	-6.96	19909.80
9971	2014-03-15	-65.95	19916.76

This is how we calculate it

ID	VALUE_DATE	AMOUNT	BALANCE
		-	
9997	2014-03-18	-(99.17)	+19985.81
9981	2014-03-16	-(71.44)	19886.64
9979	2014-03-16	-(-94.60)	19815.20
9977	2014-03-16	-6.96	=19909.80
9971	2014-03-15	-65.95	19916.76


```
SUM(t.amount) OVER (
  PARTITION BY t.account id
               t.value_date DESC,
  ORDER BY
               t.id
                             DESC
  ROWS BETWEEN UNBOUNDED PRECEDING
       AND
                          PRECEDING
               1
```

SUM(t.amount) OVER (PARTITION BY t.account id t.value_date DESC, ORDER BY t.id DESC **ROWS BETWEEN UNBOUNDED PRECEDING** PRECEDING AND 1

SUM(t.amount) OVER (PARTITION BY t.account id ORDER BY t.value_date DESC, t.id DESC BETWEEN UNBOUNDED PRECEDING ROWS PRECEDING AND 1

SUM(t.amount) OVER (PARTITION BY t.account id t.value_date DESC, ORDER BY t.id DESC **ROWS BETWEEN UNBOUNDED PRECEDING AND** PRECEDING 1

Remember these two advanced SQL features:

- 1. (Recursive) common table expressions
- 2. Window functions

Now we have the tool set. Are you ready?

Don't worry if this is how you feel:

Copyright (c) 2009-2016 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

Copyright (c) 2009-2016 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

LOGIN_TIME

2014-03-18	05:37:13
2014-03-16	08:31:47
2014-03-16	06:11:17
2014-03-16	05:59:33
2014-03-15	11:17:28
2014-03-15	10:00:11
2014-03-15	07:45:27
2014-03-15	07:42:19
2014-03-14	09:38:12

Easy...

SELECT DISTINCT cast(login_time AS DATE) AS login_date FROM logins WHERE user_id = :user_id

Copyright (c) 2009-2016 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

Still easy...

SELECT login_date, row_number() OVER (ORDER BY login_date) FROM login_dates

Copyright (c) 2009-2016 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

Now, what happens if we subtract...?

SELECT login_date row_number() OVER (ORDER BY login_date) FROM login_dates

Copyright (c) 2009-2016 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

Such consecutive

Much row number

WOW

Easy explanation:

ROW_NUMBER() never has gaps Our data, however, does

So, just group by this difference!

SELECT

min(login_date), max(login_date), max(login_date) min(login_date) + 1 AS length FROM login_date_groups GROUP BY grp ORDER BY length DESC


```
WITH
  login_dates AS (
    SELECT DISTINCT cast(login_time AS DATE) login_date
    FROM logins WHERE user_id = :user_id
  ),
  login date groups AS (
    SELECT
      login date,
      login date - row number() OVER (ORDER BY login date) AS grp
    FROM login dates
SELECT
 min(login_date), max(login_date),
  max(login date) - min(login date) + 1 AS length
FROM login_date_groups
GROUP BY grp
ORDER BY length DESC
```


5. Finding the length of a series

ID I	VALUE_DATE	AMOUNT	
9997	2014-03-18	99.17	
9981	2014-03-16	71.44	
9979	2014-03-16	-94.60	
9977	2014-03-16	-6.96	
9971	2014-03-15	-65.95	
9964	2014-03-15	15.13	
9962	2014-03-15	17.47	
9960	2014-03-15	-3.55	
9959	2014-03-14	32.00	

5. Finding the length of a series

ID	VALUE_DATE	AMOUNT	LENGTH
		-	
9997	2014-03-18	99.17	2
9981	2014-03-16	71.44	2
9979	2014-03-16	-94.60	3
9977	2014-03-16	-6.96	3
9971	2014-03-15	-65.95	3
9964	2014-03-15	15.13	2
9962	2014-03-15	17.47	2
9960	2014-03-15	-3.55	1
9959	2014-03-14	32.00	1

ID	VALUE_DATE	AMOUNT	LENGTH
9997	2014-03-18	+99.17	2
9981	2014-03-16	+71.44	2
9979	2014-03-16	-94.60	3
9977	2014-03-16	-6.96	3
9971	2014-03-15	-65.95	3
9964	2014-03-15	15.13	2
9962	2014-03-15	17.47	2
9960	2014-03-15	-3.55	1
9959	2014-03-14	32.00	1

ID	VALUE_DATE	AMOUNT	LENGTH
9997	2014-03-18	99.17	2
9981	2014-03-16	71.44	2
9979	2014-03-16	-94.60	3
9977	2014-03-16	-6.96	3
9971	2014-03-15	-65.95	3
9964	2014-03-15	15.13	2
9962	2014-03-15	17.47	2
9960	2014-03-15	-3.55	1
9959	2014-03-14	32.00	1

ID	VALUE_DATE	AMOUNT	LENGTH
9997	2014-03-18	99.17	2
9981	2014-03-16	71.44	2
9979	2014-03-16	-94.60	3
9977	2014-03-16	-6.96	3
9971	2014-03-15	-65.95	3
9964	2014-03-15	+15.13	2
9962	2014-03-15	+17.47	2
9960	2014-03-15	-3.55	1
9959	2014-03-14	32.00	1

ID	VALUE_DATE	AMOUNT	LENGTH
9997	2014-03-18	99.17	2
9981	2014-03-16	71.44	2
9979	2014-03-16	-94.60	3
9977	2014-03-16	-6.96	3
9971	2014-03-15	-65.95	3
9964	2014-03-15	15.13	2
9962	2014-03-15	17.47	2
9960	2014-03-15	-3.55	1
9959	2014-03-14	32.00	1

ID	VALUE_DATE	AMOUNT	LENGTH
9997	2014-03-18	99.17	2
9981	2014-03-16	71.44	2
9979	2014-03-16	-94.60	3
9977	2014-03-16	-6.96	3
9971	2014-03-15	-65.95	3
9964	2014-03-15	15.13	2
9962	2014-03-15	17.47	2
9960	2014-03-15	-3.55	1
9959	2014-03-14	+32.00	1

ID	AMOUNT	SIGN	RN	
9997	99.17	1	1	
9981	71.44	1	2	
9979	-94.60	-1	3	
9977	-6.96	-1	4	
9971	-65.95	-1	5	
9964	15.13	1	6	
9962	17.47	1	7	
9960	-3.55	-1	8	
9959	32.00	1	9	

That's easy

SELECT

id, amount, sign(amount) AS sign, row_number() OVER (ORDER BY id DESC) AS rn FROM trx

ID	AMOUNT	SIGN	RN	LO	HI	
9997	99.17	1	1	1		
9981	71.44	1	2		2	
9979	-94.60	-1	3	3		
9977	-6.96	-1	4			
9971	-65.95	-1	5		5	
9964	15.13	1	6	6		
9962	17.47	1	7		7	
9960	-3.55	-1	8	8	8	
9959	32.00	1	9	9	9	

ID	AMOUNT	SIGN	RN	LO	HI	
9997	99.17	1	1	1		
9981	71.44	1	2		2	
9979	-94.60	-1	3	3		
9977	-6.96	-1	4			
9971	-65.95	-1	5		5	
9964	15.13	1	6	6		
9962	17.47	1	7		7	
9960	-3.55	-1	8	8	8	
9959	32.00	1	9	9	9	

ID	AMOUNT	SIGN	RN	LO	HI	
9997	99.17	1	1	1		
9981	71.44	1	2		2	
9979	-94.60	-1	3	3		
9977	-6.96	-1	4			
9971	-65.95	-1	5		5	
9964	15.13	1	6	6		
9962	17.47	1	7		7	
9960	-3.55	-1	8	8	8	
9959	32.00	1	9	9	9	

ID	AMOUNT	SIGN	RN	LO	HI	
9997	99.17	1	1	1		
9981	71.44	1	2		2	
9979	-94.60	-1	3	3		
9977	-6.96	-1	4			
9971	-65.95	-1	5		5	
9964	15.13	1	6	6		
9962	17.47	1	7		7	
9960	-3.55	-1	8	8	8	
9959	32.00	1	9	9	9	

ID	AMOUNT	SIGN	RN	LO	HI	
9997	99.17	1	1	1		
9981	71.44	1	2		2	
9979	-94.60	-1	3	3		
9977	-6.96	-1	4			
9971	-65.95	-1	5		5	
9964	15.13	1	6	6		
9962	17.47	1	7		7	
9960	-3.55	-1	8	8	8	
9959	32.00	1	9	9	9	

ID	AMOUNT	SIGN	RN	LO	HI	
	 					
9997	99.17	1	1	1		
9981	71.44	1	2		2	
9979	-94.60	-1	3	3		
9977	-6.96	-1	4			
9971	-65.95	-1	5		5	
9964	15.13	1	6	6		
9962	17.47	1	7		7	
9960	-3.55	-1	8	8	8	
9959	32.00	1	9	9	9	

ID	AMOUNT	SIGN	RN	LO	HI	
9997	99.17	1	1	1	2	
9981	71.44	1	2	1	2	
9979	-94.60	-1	3	3	5	
9977	-6.96	-1	4	3	5	
9971	-65.95	-1	5	3	5	
9964	15.13	1	6	6	7	
9962	17.47	1	7	6	7	
9960	-3.55	-1	8	8	8	
9959	32.00	1	9	9	9	

ID	AMOUNT	SIGN	RN	LO	HI	
9997	99.17	1	1	1	2	
9981	71.44	1	2	1	2	
9979	-94.60	-1	3	3	5	
9977	-6.96	-1	4	3	5	
9971	-65.95	-1	5	3	5	
9964	15.13	1	6	6	7	
9962	17.47	1	7	6	7	
9960	-3.55	-1	8	8	8	
9959	32.00	1	9	9	9	

ID	AMOUNT	SIGN	RN	LO	HI	
9997	99.17	1	1	1	2	
9981	71.44	1	2	1	2	
9979	-94.60	-1	3	3	5	
9977	-6.96	-1	4	3	5	
9971	-65.95	-1	5	3	5	
9964	15.13	1	6	6	7	
9962	17.47	1	7	6	7	
9960	-3.55	-1	8	8	8	
9959	32.00	1	9	9	9	

ID	AMOUNT	SIGN	RN	LO	HI	
9997	99.17	1	1	1	2	
9981	71.44	1	2	1	2	
9979	-94.60	-1	3	3	5	
9977	-6.96	-1	4	3	5	
9971	-65.95	-1	5	3	5	
9964	15.13	1	6	6	7	
9962	17.47	1	7	6	7	
9960	-3.55	-1	8	8	8	
9959	32.00	1	9	9	9	

ID	AMOUNT	SIGN	RN	LO	HI	
9997	99.17	1	1	1	2	
9981	71.44	1	2	1	2	
9979	-94.60	-1	3	3	5	
9977	-6.96	-1	4	3	5	
9971	-65.95	-1	5	3	5	
9964	15.13	1	6	6	7	
9962	17.47	1	7	6	7	
9960	-3.55	-1	8	8	8	
9959	32.00	1	9	9	9	

ID	AMOUNT	SIGN	RN	LO	HI	
9997	99.17	1	1	1	2	
9981	71.44	1	2	1	2	
9979	-94.60	-1	3	3	5	
9977	-6.96	-1	4	3	5	
9971	-65.95	-1	5	3	5	
9964	15.13	1	6	6	7	
9962	17.47	1	7	6	7	
9960	-3.55	-1	8	8	8	
9959	32.00	1	9	9	9	

SELECT

```
trx.*,
 last value (lo) IGNORE NULLS OVER (
    ORDER BY id DESC
    ROWS BETWEEN UNBOUNDED PRECEDING
   AND CURRENT ROW) AS lo,
 first value(hi) IGNORE NULLS OVER (
   ORDER BY id DESC
    ROWS BETWEEN CURRENT ROW
    AND UNBOUNDED FOLLOWING) AS hi
FROM trx
```

SYBASE DB2. ORACLE

AMAZON REDSHIFT

SELECT -- With NULL handling...

```
trx.*,
 coalesce(last value (lo) IGNORE NULLS OVER
   ORDER BY id DESC
   ROWS BETWEEN UNBOUNDED PRECEDING
   AND CURRENT ROW), rn) AS lo,
 coalesce(first value(hi) IGNORE NULLS OVER
   ORDER BY id DESC
   ROWS BETWEEN CURRENT ROW
   AND UNBOUNDED FOLLOWING), rn) AS hi
FROM trx
               SYBASE DB2. ORACLE
         AMAZON
```

REDSHIFT

ID	AMOUNT	SIGN	RN	LO	HI	
9997	99.17	1	1	1		
9981	71.44	1	2		2	
9979	-94.60	-1	3	≜ ↑ 3	1	
9977	-6.96	-1	4		ll 1	
9971	-65.95	-1	5		** 5	
9964	15.13	1	6	6		
9962	17.47	1	7		7	
9960	-3.55	-1	8	8	8	
9959	32.00	1	9	9	9	

ID	AMOUNT	SIGN	RN	LO	HI	
9997	99.17	1	1	1		
9981	71.44	1	2		2	
9979	-94.60	-1	3	≜ ↑ 3	5	
9977	-6.96	-1	4	3	 5	
9971	-65.95	-1	5	3	** 5	
9964	15.13	1	6	6		
9962	17.47	1	7		7	
9960	-3.55	-1	8	8	8	
9959	32.00	1	9	9	9	

Trivial last step

SELECT trx.*, 1 + hi - lo AS length FROM trx

ID	AMOUNT	SIGN	RN	LO	HI	LENGTH
9997	99.17	1	1	1	2	2
9981	71.44	1	2	1	2	2
9979	-94.60	-1	3	3	5	3
9977	-6.96	-1	4	3	5	3
9971	-65.95	-1	5	3	5	3
9964	15.13	1	6	6	7	2
9962	17.47	1	7	6	7	2
9960	-3.55	-1	8	8	8	1
9959	32.00	1	9	9	9	1

```
trx1(id, amount, sign, rn) AS (
   SELECT id, amount, sign(amount), row number() OVER (ORDER BY id DESC)
   FROM trx
 ),
 trx2(id, amount, sign, rn, lo, hi) AS (
   SELECT trx1.*,
   CASE WHEN coalesce(lag(sign) OVER (ORDER BY id DESC), 0) != sign
        THEN rn END,
   CASE WHEN coalesce(lead(sign) OVER (ORDER BY id DESC), 0) != sign
        THEN rn END
   FROM trx1
 trx2.*, 1
 - last value (lo) IGNORE NULLS OVER (ORDER BY id DESC
   ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW)
 + first value(hi) IGNORE NULLS OVER (ORDER BY id DESC
   ROWS BETWEEN CURRENT ROW AND UNBOUNDED FOLLOWING)
FROM trx2
```

Still OK?

Image credit: <u>https://www.flickr.com/photos/ekilby/8045769337/</u> By Eric Kilby. License CC-BY SA 2.0

What is the subset sum problem?

Explanation:

https://xkcd.com/287

(cannot include comic for © reasons. Please, don't use CC-BY SA <u>NC</u> without an actual commercial offering!)

Boring explanation:

https://en.wikipedia.org/wiki/Subset sum problem

Desired result:

Let's implement the naïvest possible, exponential algorithm

$O(2^NN)$

There are 2[№] subsets and we need to sum at most N elements.

$O(2^{N}N)$

Maybe, if I just hide, the query will go away...?

Image credit: <u>https://www.flickr.com/photos/12023825@N04/2898021822</u> By Peter. License CC-BY SA 2.0

What are the possible sums?

All the	e single	e-item sums "Stack"	
ID	ITEM		
1	7120	SUMS(1:10)	
2	8150		
3	8255		
4	9051		
5	1220		
6	12515		
7	13555		
8	5221		
9	812		
10	6562		

All the	e single	-item sums	"Stack"
ID	ITEM		
 1	7120		{ 7120 } x SUMS(2:10)
2	8150		
3	8255		
4	9051		
5	1220		
6	12515		
7	13555		
8	5221		
9	812		
10	6562		

All the	e single	-item sums	"Stack"
ID	ITEM		
 	7120		{ 7120 + 8150 } x SUMS(3:10)
2	8150		
3	8255		
4	9051		
5	1220		
6	12515		
7	13555		
8	5221		
9	812		
10	6562		


```
-- First iteration
SELECT item, id, to_char(item)
FROM items
```



```
-- First iteration
SELECT item, id, to_char(item)
FROM items
-- Recursion
UNION ALL
SELECT
  item + sum,
  items.id,
  calc || ' + ' || item
FROM sums JOIN items ON sums.id < items.id
```



```
-- First iteration
SELECT item, id, to char(item)
FROM items
-- Recursion
  item + sum,
  items.id,
  calc || ' + ' || item
FROM sums JOIN items ON sums.id < items.id
```



```
-- First iteration
SELECT item, id, to char(item)
FROM items
-- Recursion
  item + sum,
  items.id,
  calc || ' + ' || item
FROM sums JOIN items ON sums.id < items.id
```

```
-- All the possible 2<sup>N</sup> sums
WITH sums(sum, id, calc) AS (
```

```
-- First iteration
SELECT item, id, to_char(item)
FROM items
-- Recursion
  item + sum,
  items.id,
  calc || ' + ' || item
FROM sums JOIN items ON sums.id < items.id
```

```
-- First iteration
SELECT item, id, to char(item)
FROM items
-- Recursion
  item + sum,
  items.id,
  calc || ' + ' || item
FROM sums JOIN items ON sums.id < items.id
```



```
-- All the possible 2^N sums
WITH sums(sum, max_id, calc) AS (...)
-- Find the best sum per "TOTAL"
SFI FCT
 totals.id,
 totals.total,
  min(abs(total - sum)) AS best diff
FROM totals
                                     TOTAL BEST DIFF
<u>CROSS JOIN sums</u>
                                       25150
                                                    17
GROUP BY totals.id, totals.total
                                                    32
                                       19800
                                                    23
                                       27511
```

Copyright (c) 2009-2016 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

```
-- All the possible 2^N sums
WITH sums(sum, max_id, calc) AS (...)
-- Find the best sum per "TOTAL"
 totals.id,
  totals.total,
  min(abs(total - sum)) AS best diff
FROM totals
                                    TOTAL BEST_DIFF
CROSS JOIN sums
                                      25150
                                                  17
GROUP BY totals.id, totals.total
                                      19800
                                                  32
                                                  23
                                      27511
```

Copyright (c) 2009-2016 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

What's this CROSS JOIN?

$$R \times S$$
Ranks = {A, K, Q, J, 10, 9, 8, 7, 6, 5, 4, 3, 2}
Suits = { $\bullet, \bullet, \bullet, \bullet$ }
Ranks × Suits = {
 (A, \bullet), (A, \bullet), (A, \bullet), (A, \bullet),
 (K, \bullet), ...,
 (2, \bullet), (2, \bullet), (2, \bullet), (2, \bullet)

By Trainler - Own work, CC BY 3.0, https://commons.wikimedia.org/w/index.php?curid=7104281


```
WITH sums(sum, id, calc) AS (
 SELECT item, id, to char(item) FROM items
  UNION ALL
  SELECT item + sum, items.id, calc || ' + ' || item
  FROM sums JOIN items ON sums.id < items.id
SELECT
  totals.id,
 totals.total,
  min (sum) KEEP (
   DENSE RANK FIRST ORDER BY abs(total - sum)
  ) AS best,
 min (calc) KEEP (
    DENSE RANK FIRST ORDER BY abs(total - sum)
  ) AS calc,
FROM totals
CROSS JOIN sums
GROUP BY totals.id, totals.total
```


Electrified?

Tomais Aslidene

The running total must not be < 0

Copyright (c) 2009-2016 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

DATE	AMOUNT	
2012-01-01	800	
2012-02-01	1900	
2012-03-01	1750	
2012-04-01	-20000	
2012-05-01	900	
2012-06-01	3900	
2012-07-01	-2600	
2012-08-01	-2600	
2012-09-01	2100	
2012-10-01	-2400	
2012-11-01	1100	
2012-12-01	1300	

DATE	AMOUNT	TOTAL	
2012-01-01	800	800	
2012-02-01	1900	2700	
2012-03-01	1750	4450	
2012-04-01	-20000	0	
2012-05-01	900	900	
2012-06-01	3900	4800	
2012-07-01	-2600	2200	
2012-08-01	-2600	0	
2012-09-01	2100	2100	
2012-10-01	-2400	0	
2012-11-01	1100	1100	
2012-12-01	1300	2400	

DATE	AMOUNT	TOTAL		
2012-01-01	800	800	GREATEST(0,	800)
2012-02-01	1900	2700	GREATEST(0,	2700)
2012-03-01	1750	4450	GREATEST(0,	4450)
2012-04-01	-20000	0	GREATEST(0,	
2012-05-01	900	900	GREATEST(0,	900)
2012-06-01	3900	4800	GREATEST(0,	4800)
2012-07-01	-2600	2200	GREATEST(0,	2200)
2012-08-01	-2600	0	GREATEST(0,	
2012-09-01	2100	2100	GREATEST(0,	2100)
2012-10-01	-2400	0	GREATEST(0,	
2012-11-01	1100	1100	GREATEST(0,	1100)
2012-12-01	1300	2400	GREATEST(0,	2400)

		SU	MME 🔻	: ×	✓ f _x	=C3-B3
DATE	AMOUN		А	В	С	D
		1	value_date	amount	balance	2
2012-01-01	80	2	17.03.2014	15.87	13222.45	5
2012-02-01	190	3	16.03.2014	-33.14	13206.58	3
2012-03-01	175	4	16.03.2014	-93.77	=C3-B3	
2012-04-01	-2000	5	13.03.2014	10.65	13333.49	Ð
2012-05-01	90	6	11.03.2014	19.16	13322.84	1
2012-06-01	390	7	11.03.2014	-59.25	13303.68	3
2012-07-01	-260	8	11.03.2014	94.86	13362.93	3
2012-08-01	-260	9	10.03.2014	80.42	13268.07	,
2012-09-01	210	10	10.03.2014	38.43		
2012-10-01	-240	11	09.03.2014	-4.41		
2012 10 01	240 110	12	08.03.2014	80.45		
		13	07.03.2014	-56.45		
2012-12-01	130	0	2400	UNLAILS		

Reactive programming!

How to do it?

How to do it?

1. Window functions?

Oracle MODEL: Spreadsheet SQL!

SELECT ... FROM some_table

-- Put this after any table MODEL ...

Copyright (c) 2009-2016 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

Oracle MODEL clause

MODEL -- The spreadsheet dimensions DIMENSION BY -- The spreadsheet cell type MEASURES ... -- The spreadsheet formulas RULES ...

ORACL

Oracle MODEL clause

MODEL

-- The spreadsheet dimensions DIMENSION BY ...

-- The spreadsheet cell type MEASURES ...

-- The spreadsheet formulas RULES ...

Oracle MODEL clause

MODEL

-- The spreadsheet dimensions DIMENSION BY ...

-- The spreadsheet cell type MEASURES ...

-- The spreadsheet formulas RULES ...

Oracle MODEL clause

MODEL

-- The spreadsheet dimensions DIMENSION BY ...

-- The spreadsheet cell type MEASURES ...

-- The spreadsheet formulas RULES ...

	4	Α	В	С
-	_	~	0	
1				
2				
2			=B2+A3	
4				
6				
7				
9				
10	0			
1	1			
12	2			
13	3			
14	4			
	_			


```
SELECT
FROM (
 SELECT date, amount, 0 AS total
  FROM amounts
MODEL
 DIMENSION BY (row number() OVER (ORDER BY date) AS rn)
 MEASURES (date, amount, total)
  RULES (
    total[any] = greatest(0,
      total[cv(rn) - 1] + amount[cv(rn)])
-- «simple» rule based on cv(rn) (cv = current value)
```



```
SFIFCT *
FROM (
 SELECT date, amount, 0 AS total
  FROM amounts
MODFL
 DIMENSION BY (row number() OVER (ORDER BY date) AS rn)
 MEASURES (date, amount, total)
  RULES (
    total[any] = greatest(0, -- Getting NULLs right
      coalesce(total[cv(rn) - 1], 0) + amount[cv(rn)])
-- «simple» rule based on cv(rn) (cv = current value)
```


Read the whitepaper for more details:

http://www.oracle.com/technetwork/mi ddleware/bi-foundation/10gr1-twp-bidw-sqlmodel-131067.pdf

(Google «Oracle MODEL Whitepaper»)

Extra credit:

After this talk, do tricks #2 - #6 with MODEL! (☞° ヮ°)☞ ☜(° ヮ° ☜)

ID	VALUE_DATE	AMOUNT	LEN	
9997	2014-03-18	+ 99.17	1	
9981	2014-03-16	- 71.44	4	
9979	2014-03-16	- 94.60	4	
9977	2014-03-16	- 6.96	4	
9971	2014-03-15	- 65.95	4	
9964	2014-03-15	+ 15.13	3	
9962	2014-03-15	+ 17.47	3	
9960	2014-03-15	+ 3.55	3	
9959	2014-03-14	- 32.00	1	

ID	VALUE_DATE	AMOUNT	LEN	TRIGGER
9997	2014-03-18	+ 99.17	1	
9981	2014-03-16	- 71.44	4	
9979	2014-03-16	- 94.60	4	X
9977	2014-03-16	- 6.96	4	
9971	2014-03-15	- 65.95	4	
9964	2014-03-15	+ 15.13	3	
9962	2014-03-15	+ 17.47	3	
9960	2014-03-15	+ 3.55	3	
9959	2014-03-14	- 32.00	1	

••

ID	VALUE_DATE	AMOUNT	LEN	TRIGGER
9997	2014-03-18	+ 99.17	1	
9981	2014-03-16	- 71.44	4	
9979	2014-03-16	- 94.60	4	Х
9977	2014-03-16	- 6.96	4	
9971	2014-03-15	- 65.95	4	
9964	2014-03-15	+ 15.13	3	
9962	2014-03-15	+ 17.47	3	
9960	2014-03-15	+ 3.55	3	
9959	2014-03-14	- 32.00	1	

Trigger on the 3rd repetition of an event if the event occurs more than 3 times.

Oracle 12c MATCH_RECOGNIZE!

SELECT ... FROM some_table

-- Put this after any table to pattern-match
-- the table's contents
MATCH_RECOGNIZE (...)

- SELECT * FROM series MATCH_RECOGNIZE (ORDER BY ...
 - -- Pattern matching is done in this order

SELECT * FROM series MATCH_RECOGNIZE (ORDER BY ... MEASURES ...

-- These are the columns produced by matches

SELECT * FROM series MATCH_RECOGNIZE (ORDER BY ... MEASURES ... ALL ROWS PER MATCH

-- A short specification of what rows are-- returned from each match

```
SELECT *
FROM series
MATCH_RECOGNIZE (
ORDER BY ...
MEASURES ...
ALL ROWS PER MATCH
PATTERN (...)
```

-- «Regular expressions» of events to match

```
SELECT *
FROM series
MATCH_RECOGNIZE (
ORDER BY ...
MEASURES ...
ALL ROWS PER MATCH
PATTERN (...)
DEFINE ...
```

-- The definitions of «what is an event»

ID	VALUE_DATE	AMOUNT TRIGGER
9997	2014-03-18	+ 99.17
9981	2014-03-16	- 71.44
9979	2014-03-16	- 94.60 ×
9977	2014-03-16	- 6.96
9971	2014-03-15	- 65.95
9964	2014-03-15	+ 15.13
9962	2014-03-15	+ 17.47
9960	2014-03-15	+ 3.55
9959	2014-03-14	- 32.00

••

SELECT * FROM series MATCH_RECOGNIZE (ORDER BY id	ID VALUE_DATE AMOUNT TRIGGER 9997 2014-03-18 + 99.17 9981 2014-03-16 - 71.44 9979 2014-03-16 - 94.60 9977 2014-03-16 - 6.96 9971 2014-03-15 - 65.95 9964 2014-03-15 + 15.13 9962 2014-03-15 + 3.55 9959 2014-03-14 - 32.00
MEASURES ALL ROWS PER MATCH PATTERN () DEFINE)	

	ID VALUE_DATE AMOUNT TRIGGER
SELECT * FROM series MATCH_RECOGNIZE (ORDER BY id	9997 2014-03-18 + 99.17 9981 2014-03-16 - 71.44 9979 2014-03-16 - 94.60 9977 2014-03-16 - 6.96 9971 2014-03-15 - 65.95 9964 2014-03-15 + 15.13 9962 2014-03-15 + 3.55 9959 2014-03-14 - 32.00
MEASURES classifier() AS trg ALL ROWS PER MATCH	
PATTERN () DEFINE	
	ORACLE

SELECT * FROM series MATCH_RECOGNIZE (ORDER BY id	ID VALUE_DATE AMOUNT TRIGGER 9997 2014-03-18 + 99.17 9981 2014-03-16 - 71.44 9979 2014-03-16 - 94.60 9977 2014-03-16 - 6.96 9971 2014-03-15 - 65.95 9964 2014-03-15 + 15.13 9962 2014-03-15 + 3.55 9959 2014-03-14 - 32.00
<pre>MEASURES classifier() AS t ALL ROWS PER MATCH PATTERN (S (R X R+)?)</pre>	rg
DEFINE)	
	ORACLE

SELECT * FROM series MATCH_RECOGNIZE (ORDER BY id	ID VALUE_DATE AMOUNT TRIGGER 9997 2014-03-18 + 99.17 9981 2014-03-16 - 71.44 9979 2014-03-16 - 94.60 9977 2014-03-16 - 6.96 9971 2014-03-15 - 65.95 9964 2014-03-15 + 15.13 9962 2014-03-15 + 3.55 9959 2014-03-14 - 32.00
MEASURES classifier() AS trg ALL ROWS PER MATCH PATTERN (S (R X R+)?) DEFINE	
<pre>R AS sign(R.amount) = prev X AS sign(X.amount) = prev</pre>	
	ORACLE

SELECT * FROM series MATCH_RECOGNIZE (ORDER BY id	ID VALUE_DATE AMOUNT TRIGGER 9997 2014-03-18 + 99.17 9981 2014-03-16 - 71.44 9979 2014-03-16 - 94.60 9977 2014-03-16 - 6.96 9971 2014-03-15 - 65.95 9964 2014-03-15 + 15.13 9962 2014-03-15 + 3.55 9959 2014-03-14 - 32.00
<pre>MEASURES classifier() ALL ROWS PER MATCH PATTERN (S (R X R+)?) DEFINE</pre>	AS trg
	<pre>= prev(sign(R.amount)), = prev(sign(X.amount))</pre>

ID	VALUE_DATE	AN PAT	TERN (S (R X R+)?)
9997	2014-03-18	+ 99.17	S
9981	2014-03-16	- 71.44	R
9979	2014-03-16	- 94.60	X
9977	2014-03-16	- 6.96	R
9971	2014-03-15	- 65.95	S
9964	2014-03-15	+ 15.13	S
9962	2014-03-15	+ 17.47	S
9960	2014-03-15	+ 3.55	S
9959	2014-03-14	- 32.00	S

_		
ID	VALUE_DATE	PATTERN (S (R X R+)?)
9997	2014-03-18	+ 99.17 <mark>S</mark>
9981	2014-03-16	- 71.44 R
9979	2014-03-16	- 94.60 X
9977	2014-03-16	- 6.96 R
9971	2014-03-15	- 65.95 <mark>S</mark>
9964	2014-03-15	+ 15.13 <mark>S</mark>
9962	2014-03-15	+ 17.47 S
9960	2014-03-15	+ 3.55 S
9959	2014-03-14	- 32.00 S

ID	VALUE_DATE	PATTERN (S (R X R+)?)
9997	2014-03-18	+ 99.17 <mark>S</mark>
9981	2014-03-16	- 71.44 R
9979	2014-03-16	- 94.60 X
9977	2014-03-16	- 6.96 R
9971	2014-03-15	- 65.95 <mark>S</mark>
9964	2014-03-15	+ 15.13 <mark>S</mark>
9962	2014-03-15	+ 17.47 <mark>S</mark>
9960	2014-03-15	+ 3.55 S
9959	2014-03-14	- 32.00 S

			DAT			
I		VALUE DATE		IERN (S	(R X R+)?)	
I						2
I						
I	9997	2014-03-18	+ 99.17	S S		
	9981	2014-03-16	- 71.44	R		
1	9979	2014-03-16	- 94.60	X		
1	9977	2014-03-16	- 6.96	R		
1	9971	2014-03-15	- 65.95	S		
I	9964	2014-03-15	+ 15.13	S		
I	9962	2014-03-15	+ 17.47	S S		
	9960	2014-03-15	+ 3.55	S S		
	9959	2014-03-14	- 32.00	S		

Ð

SELECT id, value date, amount, CASE trg WHEN 'X' THEN 'X' END trg FROM series MATCH RECOGNIZE (ORDFR BY id MEASURES classifier() AS trg ALL ROWS PER MATCH PATTERN (S (R X R+)?) DFFTNF R AS sign(R.amount) = prev(sign(R.amount)), X AS sign(X.amount) = prev(sign(X.amount))

ORACLE

Copyright (c) 2009-2016 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

ID	VALUE_DATE	AMOUNT TRG	
9997	2014-03-18	+ 99.17	
9981	2014-03-16	- 71.44	
9979	2014-03-16	- 94.60 X	
9977	2014-03-16	- 6.96	
9971	2014-03-15	- 65.95	
9964	2014-03-15	+ 15.13	
9962	2014-03-15	+ 17.47	
9960	2014-03-15	+ 3.55	
9959	2014-03-14	- 32.00	

Read the whitepaper for more details:

http://www.oracle.com/ocom/groups/p ublic/@otn/documents/webcontent/19 65433.pdf

(Google «Oracle MATCH_RECOGNIZE Whitepaper»)

Extra credit:

After this talk, do tricks #2 -#7 with MATCH_RECOGNIZE!

Copyright (c) 2009-2016 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

9. Pivoting and unpivoting

Now that you're experts...

... this is almost too embarassingly simple

Copyright (c) 2009-2016 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

9. Pivoting and unpivoting

NAME	TITLE	RATING	
A. GRANT A. GRANT A. GRANT A. GRANT A. HUDSON A. CRONYN A. CRONYN B. WALKEN	ANNIE IDENTITY DISCIPLE MOTHER GLORY TRACY LEGEND JEDI IRON MOON LADY STAGE SIEGE MADRE	G PG PG PG PG R	

9. Pivoting and unpivoting

Pivoting

NAME	NC-17	PG	G	PG-13	R
A. GRANT	3	6	5	3	1
A. HUDSON	12	4	7	9	2
A. CRONYN	6	9	2	6	4
B. WALKEN	8	8	4	7	3
B. WILLIS	5	5	14	3	6
C. DENCH	6	4	5	4	5
C. NEESON	3	8	4	7	3

Unpivoting

NAME	RATING	COUNT	
A. GRANT	NC-17	3	
A. GRANT	PG	6	
A. GRANT	G	5	
A. GRANT	PG-13	3	
A. GRANT	R	6	
A. HUDSON	NC-17	12	
A. HUDSON	PG	4	

OK? – I know. That meme again...

Only PostgreSQL so far

All others

SELECT

first_name, last_name, count(CASE rating WHEN 'NC-17' THEN 1 END) AS "NC-17", count(CASE rating WHEN 'PG' THEN 1 END) AS "PG", count(CASE rating WHEN 'G' THEN 1 END) AS "G", count(CASE rating WHEN 'PG-13' THEN 1 END) AS "PG-13", count(CASE rating WHEN 'R' THEN 1 END) AS "R" FROM actor AS a JOIN film_actor AS fa USING (actor_id) JOIN film AS f USING (film_id) GROUP BY actor_id

```
SELECT
 actor_id, first_name, last_name,
 "NC-17", "PG", "G", <u>"PG-</u>13", "R"
FROM (
 SELECT actor_id, first_name, last_name, rating
 FROM actor a
 JOIN film_actor fa USING (actor_id)
 JOIN film f USING (film_id)
PIVOT (
 count(*) FOR rating IN (
   'NC-17' AS "NC-17",
    'PG' AS "PG",
    <u>'G'</u> AS "G",
   'PG-13' AS "PG-13",
    'R' AS "R"
                                       QL Server CRACLE
                                     Microsoft*
```

```
SELECT something, something
FROM some_table
PIVOT (
 count(*) FOR rating IN (
   'NC-17' AS "NC-17",
   'PG' AS "PG",
   'G' AS "G",
   'PG-13' AS "PG-13",
   'R' AS "R"
                     SQL Server
```



```
SELECT something, something
FROM some_table
UNPIVOT
 count FOR rating IN (
   "NC-17" AS 'NC-17',
   "PG" AS 'PG',
   "G" AS 'G',
   "PG-13" AS 'PG-13',
        AS 'R'
   "R"
                       Microsoft*
                               SQL Server
```

Pivoting: Values from a single column become columns containing aggregations

Unpivoting: Columns become values in a single column

Image credit: https://www.flickr.com/photos/jakerust/16661140289 By GotCredit. License CC-BY 2.0

XML and JSON in the database

First, a word of truth

Image credit: https://www.flickr.com/photos/bensonkua/6326968245 By Benson Kua. License CC-BY SA 2.0

JSON is just XML with less features and less syntax

Everyone knows:

XML is awesome.

Corollary:

JSON is less awesome

Side note

XSLT is the only thing even more awesome than SQL

<actors> <actors> <actor> <actor> <actor> <actor> <actor> <alast-name>Bud <alast-name>Spencer <alast-name>Spencer <actor> <actor> <actor> <actor> <actor> <actor> <ast-name>Terence <ast-name>Hill <ast-name>Hill <ast-name>Hill</ast-name> <ast-name>Hill</ast-name></ast-name> <ast-name>Hill</ast-name></ast-name></ast-name>Hill</actor></actor></actor></actor></actor></actor></alast-name></alast-name></alast-name></actor></actor></actor></actor></actor></actors></actors>							
				_	,		
	actor_id bigint	first_name text	last_name text	-	film		
	bigint			film_id integer	film		
	bigint 1	text	text	film_id integer 1	film text		
	bigint 1 2	text Bud	text Spencer	film_id integer 1	film text God Forgives I Don't		
	bigint 1 2 1	text Bud Terence	text Spencer Hill	film_id integer 1 1 2	film text God Forgives I Don't God Forgives I Don't		
	bigint 1 2 1 2	text Bud Terence Bud	text Spencer Hill Spencer	film_id integer 1 1 2 2	film text God Forgives I Don't God Forgives I Don't Double Trouble		


```
WITH RECURSIVE
 x(v) AS (SELECT '...'::xml),
  actors(
    actor id, first name, last name, films
 ) AS (...),
 films(
    actor id, first name, last name,
   film id, film
  ) AS (...)
SFLFCT
FROM films
```



```
x(v) AS (SELECT '
<actors>
  <actor>
   <first-name>Bud</first-name>
   <last-name>Spencer</last-name>
    <films>God Forgives... I Don't, Double Trouble, They Call Him
Bulldozer</films>
  </actor>
  <actor>
   <first-name>Terence</first-name>
   <last-name>Hill</last-name>
    <films>God Forgives... I Don't, Double Trouble, Lucky Luke</films>
  </actor>
</actors>'::xml),
  actors(actor id, first name, last name, films) AS (...),
 films(actor id, first name, last name, film id, film) AS (...)
FROM films
```

```
x(v) AS (SELECT '....'::xml),
 actors(actor_id, first_name, last_name, films) AS (
   SELECT
     row number() OVER (),
      (xpath('//first-name/text()', t.v))[1]::TEXT,
      (xpath('//last-name/text()' , t.v))[1]::TEXT,
      (xpath('//films/text()' , t.v))[1]::TEXT
   FROM unnest(xpath('//actor', (SELECT v FROM x))) t(v)
  ),
 films(actor_id, first_name, last_name, film_id, film)
AS (...)
ROM films
```

```
x(v) AS (SELECT '...'::xml),
 actors(actor id, first name, last name, films) AS (...),
 films(actor id, first name, last name, film id, film) AS (
   SELECT actor_id, first name, last name, 1,
     regexp_replace(films, ',.+', '')
   FROM actors
   UNION ALL
   SELECT actor id, a.first name, a.last name, f.film id + 1,
     regexp_replace(a.films, '.*' || f.film || ', ?(.*?)(,.+)?', '\1')
   FROM films AS f
   JOIN actors AS a USING (actor id)
   WHERE a.films NOT LIKE '%' || f.film
FROM films
```


- 1. Everything is a table
- 2. Data generation with recursive SQL
- 3. Running total calculations
- 4. Finding the length of a series
- 5. Finding the largest series with no gaps
- 6. The subset sum problem with SQL
- 7. Capping a running total
- 8. Time series pattern recognition
- 9. Pivoting and unpivoting
- 10. Abusing XML and JSON (don't do this at home)

Noun

awe (uncountable)

A feeling of fear and reverence. A feeling of amazement.

Noun

awe (uncountable)

A feeling of fear and reverence. A feeling of a<u>maze</u>ment.

Noun

maze (plural mazes)

- 1. A labyrinth; a puzzle consisting of a complicated network of paths or passages, the aim of which is to find one's way.
- 2. Something made up of many confused or conflicting elements; a tangle.
- 3. Confusion of thought; perplexity; uncertainty; state of bewilderment.

Noun maze (plural mazes)

- 1. A labyrinth; a puzzle consisting of a complicated network of paths or passages, the aim of which is to find one's way.
- 2. Something made up of many confused or conflicting elements; a tangle.
- 3. Confusion of thought; perplexity; uncertainty; state of be<u>wild</u>erment.

Why do I talk about SQL?

SQL is the only ever successful, mainstream, and generalpurpose 4GL (Fourth-Generation Programming Language)

And it is awesome!

Why doesn't anyone else talk about SQL?

Can I write SQL in Java?

1. Can you do it in the database?

1. Can you do it in the database? Yes

Can you do it in the database? Yes
 Can <u>you</u> do it in the database?

Can you do it in the database? Yes
 Can <u>you</u> do it in the database? Yes

- 1. Can you do it in the database? Yes
- Can <u>you</u> do it in the database? Yes
 (... after visiting my 2 day SQL training)

- 1. Can you do it in the database? Yes
- Can <u>you</u> do it in the database? Yes

 (... after visiting my 2 day SQL training)
 (in Zurich, with 42talents.com!
 <u>http://42talents.com/de/training/technic</u>
 <u>al/SQL-Masterclass/</u>)

- 1. Can you do it in the database? Yes
- Can <u>you</u> do it in the database? Yes
 (... after visiting my 2 day SQL training)
- 3. Can you do it in *your* database?

- 1. Can you do it in the database? Yes
- Can <u>you</u> do it in the database? Yes
 (... after visiting my 2 day SQL training)
- 3. Can you do it in <u>your</u> database? Yes

- 1. Can you do it in the database? Yes
- Can <u>you</u> do it in the database? Yes
 (... after visiting my 2 day SQL training)
- Can you do it in <u>your</u> database? Yes
 (... unless you're using MySQL)

- 1. Can you do it in the database? Yes
- Can <u>you</u> do it in the database? Yes
 (... after visiting my 2 day SQL training)
- Can you do it in <u>your</u> database? Yes
 (... unless you're using MySQL)
- 4. <u>Should</u> you do it in the database?

- 1. Can you do it in the database? Yes
- Can <u>you</u> do it in the database? Yes
 (... after visiting my 2 day SQL training)
- Can you do it in <u>your</u> database? Yes
 (... unless you're using MySQL)
- 4. <u>Should</u> you do it in the database? No

Can you do it in the database? Yes Can <u>you</u> do it in the database? Yes (... after viciting my 2 day SQL training) Can you do it in <u>your</u> database? Yes 3. ulzyou op t in the catab

- 1. Can you do it in the database? Yes
- Can <u>you</u> do it in the database? Yes
 (... after visiting my 2 day SQL training)
- Can you do it in <u>your</u> database? Yes
 (... unless you're using MySQL)
- 4. <u>Should</u> you do it in the database? Yes

- 1. Can you do it in the database? Yes
- Can <u>you</u> do it in the database? Yes
 (... after visiting my 2 day SQL training)
- Can you do it in <u>your</u> database? Yes
 (... unless you're using MySQL)
- 4. <u>Should</u> you do it in the database? Yes
- 5. Do listicles attract attention?

- 1. Can you do it in the database? Yes
- Can <u>you</u> do it in the database? Yes
 (... after visiting my 2 day SQL training)
- Can you do it in <u>your</u> database? Yes
 (... unless you're using MySQL)
- 4. <u>Should</u> you do it in the database? Yes
- 5. Do listicles attract attention? Yes

- 1. Can you do it in the database? Yes
- Can <u>you</u> do it in the database? Yes
 (... after visiting my 2 day SQL training)
- Can you do it in <u>your</u> database? Yes
 (... unless you're using MySQL)
- 4. <u>Should</u> you do it in the database? Yes
- 5. Do listicles attract attention? Yes
- 6. Will this talk ever end?

- 1. Can you do it in the database? Yes
- Can <u>you</u> do it in the database? Yes
 (... after visiting my 2 day SQL training)
- Can you do it in <u>your</u> database? Yes
 (... unless you're using MySQL)
- 4. <u>Should</u> you do it in the database? Yes
- 5. Do listicles attract attention? Yes
- 6. Will this talk ever end? Yes

Contact me if you want this talk as a 1 or 2 day in-house training about awesome SQL! Our partner in Zurich: http://42talents.com/de/training/technical/SQL-Masterclass/

Coordinates

- Blog: http://blog.jooq.org (excellent Java SQL content)
- Twitter: <u>@JavaOOQ</u> / <u>@lukaseder</u> (more lame jokes)
- E-Mail: lukas.eder@datageekery.com
- Bank account: CH57 8148 7000 0SQL AWSM 7